
~ 1  (%1) = C1 = C2 A i - -  2v T A  _ _  1 - -  v --=A 3 i - -  v T A  in  (A) 
2~ 2"~--- T 2~ + - - '~  (5.2)  

(A = 

Thus, express ions  (4 .2 ) ,  (5 .1 ) ,  (5.2) give a complete so lu t ion  for  the  e l a s t o p l a s t i c  
arrangement of the original problem with conditions at the contact (4.1). 

An approach has been considered for solving a class of elastic deformation problems for 
rolled shells based on using plastic models, and by plastic here we understand existence 
of slippage for layers of these shells. Analysis has been carried out for the stress -strain 
state of these structures. It appeared that as a result of the possibility of slippage of 
layers a rolled shell operates better than a one-piece thick-walled tube in the sense that 
it is possible to redistribute more uniformly the applied load through the thickness of the 
structure. In particular, if the condition at the contact is taken in the form of (4.1), 
then it is possible to obtain an advantage in supporting capacity by almost a factor of two 
compared with a one-piece tube. The model provided makes it possible to consider its gener- 
alization in a number of other models taking account for example of internal friction of the 
material, plastic deformation of the shell layers themselves, etc. 
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ANTIPLANAR PLASTIC FLOW 

S. I. Senashov UDC 539.374 

We will consider the equations describing nonsteady-state plastic flow of a Mises medium: 

Oui Oui Op Osij 

C~U 1 Ou 2 Ou 3 

(1) 

where u l, u2, u 3 are the components of the velocity vector, p is the hydrostatic pressure, 
X is a nonnegative function, sij are the components of the stress tensor deviator, k s is the 
yield point for pure shear, and repeating indices imply summation. 

We will assume that the medium is located under conditions of antiplanar plastic flow, 
so that the solution of Eq. (i) will be sought in the form [i] 

u 1 = 0 ,  u , = O ,  u~=w(x,  y, t ) , p = O .  (2) 

Substituting Eq. (2) in Eq. (i) we obtain an equation describing antiplanar plastic flow: 

Ow 0 Wx 0 Wy 

w x H- w u w~ 

Krasnoyarsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
3, pp. 159-161, May-June, 1988. Original article submitted February 16, 1987. 

458 0021-8944/88/2903-0458512.50 �9 1988 Plenum Publishing Corporation 



Ow aw 
w ~ = ~ ,  w u = ~  (3) 

To find exact solutions of Eq. (3) we find a group of continuous transforms which that equa- 
tion admits. Calculating this group by the method of [2] we find that the group is gener- 
ated by the operators 

Xl = xay-- yOx, X~ = tO t + w e  w, 

X3 = tot q- xcgx q- yOy, X 4 = 0 t,  (4)  

X5 = Go, X6 = Ox, X7 = Or. 

To f i n d  s i g n i f i c a n t l y  d i f f e r i n g  i n v a r i a n t  s o l u t i o n s  of  Eq. (3)  we enumerate  a l l  t h e  non- 
s i m i l a r  o n e - d i m e n s i o n a l  s u b a l g e b r a s  f o r  t he  L ie  a l g e b r a  wi th  Eq. (4)  as base:  

a) X1 + o~X2 + f~X3; 

b) X l + a X  3 +  ~X~; 

c) X, + ~X~ + ~Xs; 

d) X4 + ~X 5 + ~X~; 

e) X~ + ~X6i 

f) x3 +  xsi- 
g) X2 +~X3; 

h) X~ + ~Xe; 
i) X6; 

j )  X s (~, ~ be ing  a r b i t r a r y  c o n s t a n t s ) .  

We w i l l  consider the steady-state solution invariant relative to the subgroup Xd~ 
This solution satisfies the equation 

Wx D wy 
+ 2 , ~ (5) 2 dy V w  x-i- Wy ~- 0, 

the solution of which can be used to describe plastic flow of a long cylindrical body with 
arbitrary cross-sectional form under the action of loads directed along the generatrix of the 
cylinder and constant along that generatrix. 

External loads applied to the faces of a bar are statically equivalent to a torque 

G~= j" ~(xs23--ysla)cizdy. Here the z axis coincides with the cylinder axis and the axes x and y 
lie in the plane of the cross section, bounded by the contour F. Let the vector of the nor- 
mal to the lateral surface have the form (nl, n2, 0). Since the external loads are directed 
along the generatrix, we have 

nlSX3 -~ nzs2a lr = O. (6 )  

Consequen t ly ,  i t  i s  n e c e s s a r y  to  s o l v e  t h e  problem of  Eqs. ( 5 ) ,  ( 6 ) .  

A f t e r  d i f f e r e n t i a t i o n  and o t h e r  o p e r a t i o n s  Eq. (5)  r educes  t o  t h e  form 

2 w~w= - -  2wxWyW~ ~ + w;~w~ = O, ( 7 ) 

which,  as has been shown [3,  p. 221] p r e v i o u s l y ,  admits  an i n f i n i t e  group of  L i e - B e k l u n d  
transforms. Therefore, Eq. (7) can be linearized. For example, this may be done by a 
Legendre transform. But another method is also possible. 

We introduce new unknown functions u = Wx, v = Wy, then write Eqs. (6), (7) in the form 

v2u~ - -  2uvuy + u~Vv = 0 ,  uv - -  vx = O; (8)  

nlu + n2v Ir = O. (9) 
If we consider u, v to be components of the velocity vector, then Eq. (8) describes settled 
planoparallel isentropic gas flow [4, p. 256]. Boundary condition (9) implies that the gas 
flows in a long tube with impermeable walls. 

Consequently the problem of antiplanar settled flow of a gas, Eqs. (5), (6), reduces to 
the problem of Eqs. (8), (9) for the gas dynamics equations. It should be noted that the 

459 



l/b 

Fig. i 

problem of Eqs. (5), (6) is well developed. Powerful analytical and numerical methods are 
used for its solution [4, 5]. 

Note. Aside from boundary conditions (6), others are possible. We will consider a 
cylindrical body loaded on the lateral surface by forces uniformly distributed and directed 
along the generatrix. Then on the lateral surface [i] 

nlsl~ -h n2s23]r = ](x,  y). ( 1 0 )  

We w i l l  c o n s i d e r  some n o n s t e a d y  s t a t e  i n v a r i a n t  s o l u t i o n s  w h i c h  we f e e l  t o  b e  o f  d e f i -  
n i t e  i n t e r e s t .  We w i l l  s e e k  a s o l u t i o n  i n  t h e  f o r m  w = t f ( x ,  y ) ,  s o  t h a t  Eq.  ( 3 )  i s  W r i t t e n  

a Ix + ay z as: f -----am ~l~+/~ VI~+I~ If we seek f in the form ]=~(8)/r (where r, 8 are polar 

coordinates), then for definition of the function q0 we obtain the equation @"~s _~3 ._ 2~0~,s __ 
~(~ ~- ~2)3~2 -, which can be used to describe plastic flow of a cylinder [with cross section 
specified by the equation r = ~(8)]. As the boundary condition we take Eq. (I0). 

Now let w = ax + f(bt - y), then Eq. (3) reduces to the ordinary differential equation 
d /' 

b/'= d~ ~ ~ ,  ~ -----bt- y. We solve this equation, taking the arbitrary constants which 

appear upon integration equal to zero. As a result -~-[]/'1~b"/~ ! ]n i~_~[~_~i ) I  \ 
-- b/ i = ]abl~. 

i = 

F o r  f > 0 t h e  s o l u t i o n  f = f ( ~ )  i s  shown i n  F i g .  1. I f  5 = 0 ,  t h e n  f = 1 / b .  T h i s  s o l u t i o n  
c a n  b e  u s e d  t o  d e s c r i b e  a p l a s t i c  wave  i n  a l a y e r  Ix l  < h ,  i f  a t a n g e n t  s t r e s s  s2~ i s  s p e c i -  
f i e d  on t h e  l a y e r  b o u n d a r y .  

I n  c o n c l u s i o n  we w i l l  p r e s e n t  t h e  f o r m  o f  o t h e r  i n v a r i a n t  s o l u t i o n s  o f  Eq.  ( 3 ) ,  c o n -  
s t r u c t e d  for the subalgebras "a"-"i": 

a )  w = t:/(z~+~)/(r exp ( - -~8) ,  t exp ( - - (2~  + ~)8) fo r  2~ -~ ~ =~ 0, 

w = ](~O - -  In r, t)lrl/s for  2a  -5 ~ ----- 0, ~ ~ 0; 

b ) w = ~0 + ](t exp (--~0), r exp(--a0)); 
c) m = ~ O + / ( 0 - - ~ t , r ) ; d )  w = ~ t + / ( ~ t - - z ,  y); 

e,) w = a x  + ](t, y); f )  w = a In t -5 ](x/ t ,  y/t);  

g ) ,  w = tV(s+:) / (8 ,  r 2 + : t - : )  f o r  2 ~- ~ ~ 0; w = r-U~/(t ,  8) 

for  ~ + 2 = 0; 

h )  w = tl/~/(g, (a /2) ln  t - -  x); i )  w = I(t,  y). 
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